Code No.: 14642 AS

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) IV-Semester Advanced Supplementary Examinations, September-2022 Design and Analysis of Algorithms

(IT Only)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	СО	PO
1.	Which of the asymptotic notations are not reflexive?	2	1	1	1
2.	Show $T(n)$ in O-notation, where $T(n) = 4T(\frac{n}{2}) + n$?	2	2	1	1
3.	What are the average and worst-case time complexities of Quick sort?	2	1	2	1
4.	Define Master Theorem?	2	1	2	1
5.	What is the time complexity of Bellman-Ford algorithm for shortest path tree algorithm using adjacency matrix and adjacency list representations respectively?	2	1	3	1
6.	Define the reliability design problem?	2	1	3	1
7.	Describe graph coloring problem?	2	1	4	1
8.	Show an instance of Travelling Salesman Problem?	2	2	4	2
9.	Define Cook's Theorem of NP-Completeness?	2	1	5	1
10.	Show any one problem which is NP-Hard but not NP-Complete?	2	1	5	1
	Part-B $(5 \times 8 = 40 Marks)$				
11. a)	Organize these functions according to their growth, from slowest growing to fastest growing. $f_1(n) = n^{\pi}$, $f_2(n) = \pi^n$, $f_3(n) = 1.1^n$, $f_4(n) = n \log n$, $f_5(n) = 2^{10}$, $f_6(n) = \binom{n}{4}$, $f_7(n) = n^2 \log n$, $f_8(n) = 2n$?	4	3	1	2
b)	Solve the recurrence relation $T(n) = \sqrt{n} T(\sqrt{n}) + n$.	4	3	1	2
12. a)	Demonstrate about greedy method to obtain a set of optimal Huffman codes?	4	2	2	2
b)	Develop the merge procedure to merge two successive sorted (non-decreasing order) sub lists of an array, If A[1n] is the array, A[pq] and A[q+1r] are two sorted sub lists, after merging the array elements A[pr] should be in sorted order?	4	3	2	2

13. a)	Show the dynamic programming formulation of 0/1 knap sack problem?						4	2	3	1		
b)	Construct the optimal parenthesizing of a matrix-chain product whose sequence is <5, 10, 3, 12, 5, 50, 6>?							4	3	3	2	
14. a)	Demonstrate the general methodology of branch and bound technique of problem solving?						4	2	4	2		
b)	List all solution of 5-queens problem in which one queen is placed in first column, second row?						4	3	4	2		
15. a)	Show that clique decision problem is NP-Complete?						4	2	5	1		
b)	Explain about any NP-Hard scheduling problem?							4	2	5	2	
16. a)	Solve the recurrence relation $T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n)$, using recursive tree method?							4	3	1	2	
b)	Consider the following jobs with associated profits and deadlines. Compute the sequence of jobs which will give maximum profit using greedy method							4	3	2	2	
			or jobs	which v	viii give	maxim	um prom	using				
			J2	J3	J4	J5	J6	using	glise gresti			
	greedy method	1	1					using	gia- gia- gia- gia- gia-			
	Jobs	J1	J2	Ј3	Ј4	J5	J6	using	e i gin mesti ile ile			
17.	Jobs Deadlines	J1 2 200	J2 3 180	J3 3 160	J4	J5 4	J6 2	using				
17.	Jobs Deadlines Profit Answer any to	J1 2 200 wo of the optimal e) with p(J3 3 160 ng: search tr 20, p(2)	J4 1 150 ree for t = 1/5, p	J5 4 140 the iden (3) = 1/	J6 2 130 tifier set 10, p(4)	{cout, = 1/20	4	3	3	3
17. a) b)	Jobs Deadlines Profit Answer any to Construct the float, if, while and q(0) = 1/5	J1 2 200 wo of the optimal es with $p(0, q(1) = 1)$ about so	J2 3 180 following binary s 1) = 1/2 1/10, q(2)	J3 3 160 ng: search tr 20, p(2) 2) = 1/5,	J4 1 150 ree for t = 1/5, p q(3) = 1	J5 4 140 he iden (3) = 1/ /20 and	J6 2 130 tifier set 10, p(4) = q(4) = 1/	{cout, = 1/20 /20?	4	3	3	3

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
Iii	Blooms Taxonomy Level – 3 & 4	40%
